A Key Role for the Endothelium in NOD1 Mediated Vascular Inflammation: Comparison to TLR4 Responses
نویسندگان
چکیده
Understanding the mechanisms by which pathogens induce vascular inflammation and dysfunction may reveal novel therapeutic targets in sepsis and related conditions. The intracellular receptor NOD1 recognises peptidoglycan which features in the cell wall of gram negative and some gram positive bacteria. NOD1 engagement generates an inflammatory response via activation of NFκB and MAPK pathways. We have previously shown that stimulation of NOD1 directly activates blood vessels and causes experimental shock in vivo. In this study we have used an ex vivo vessel-organ culture model to characterise the relative contribution of the endothelium in the response of blood vessels to NOD1 agonists. In addition we present the novel finding that NOD1 directly activates human blood vessels. Using human cultured cells we confirm that endothelial cells respond more avidly to NOD1 agonists than vascular smooth muscle cells. Accordingly we have sought to pharmacologically differentiate NOD1 and TLR4 mediated signalling pathways in human endothelial cells, focussing on TAK1, NFκB and p38 MAPK. In addition we profile novel inhibitors of RIP2 and NOD1 itself, which specifically inhibit NOD1 ligand induced inflammatory signalling in the vasculature. This paper is the first to demonstrate activation of whole human artery by NOD1 stimulation and the relative importance of the endothelium in the sensing of NOD1 ligands by vessels. This data supports the potential utility of NOD1 and RIP2 as therapeutic targets in human disease where vascular inflammation is a clinical feature, such as in sepsis and septic shock.
منابع مشابه
Nucleotide oligomerization domain 1 is a dominant pathway for NOS2 induction in vascular smooth muscle cells: comparison with Toll-like receptor 4 responses in macrophages
BACKGROUND AND PURPOSE Gram-negative bacteria contain ligands for Toll-like receptor (TLR) 4 and nucleotide oligomerization domain (NOD) 1 receptors. Lipopolysaccharide (LPS) activates TLR4, while peptidoglycan products activate NOD1. Activation of NOD1 by the specific agonist FK565 results in a profound vascular dysfunction and experimental shock in vivo. EXPERIMENTAL APPROACH Here, we have ...
متن کاملPathogen Sensing Pathways in Human Embryonic Stem Cell Derived-Endothelial Cells: Role of NOD1 Receptors
Human embryonic stem cell-derived endothelial cells (hESC-EC), as well as other stem cell derived endothelial cells, have a range of applications in cardiovascular research and disease treatment. Endothelial cells sense Gram-negative bacteria via the pattern recognition receptors (PRR) Toll-like receptor (TLR)-4 and nucleotide-binding oligomerisation domain-containing protein (NOD)-1. These pat...
متن کاملRole of nucleotide‐binding oligomerization domain 1 (NOD1) in pericyte‐mediated vascular inflammation
We have recently described the response of human brain pericytes to lipopolysaccharide (LPS) through toll-like receptor 4 (TLR4). However, Gram-negative pathogen-associated molecular patterns include not only LPS but also peptidoglycan (PGN). Given that the presence of co-purified PGN in the LPS preparation previously used could not be ruled out, we decided to analyse the expression of the intr...
متن کاملNod1-mediated endothelial cell activation by Chlamydophila pneumoniae.
Seroepidemiological and animal studies, as well as demonstration of viable bacteria in atherosclerotic plaques, have linked Chlamydophila pneumoniae infection to development of chronic vascular lesions and coronary heart disease. Inflammation and immune responses are dependent on host recognition of invading pathogens. The recently identified cytosolic Nod proteins are candidates for intracellu...
متن کاملEndothelium-Dependent Attenuating Effect of Trigonella foenum-graecum on the Contractile Vascular Reactivity of Diabetic Rats
The present study was undertaken to determine whether two-month treatment of streptozotocin (STZ)-diabetic rats with aqueous leaf extract of Trigonella foenum-graecum (TFG 200 mg/kg i.p.) could improve thoracic aortic responsiveness and to evaluate its endothelium dependency. For this purpose, vascular responses to KCl and noradrenaline (NA) were measured. Diabetic state significantly increased...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2012